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Abstract—Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems,
which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin
(DO) one. However, complete OD matrices of previous time intervals can not be obtained immediately in online metro systems, and
conventional methods only used limited information to forecast the future OD and DO ridership separately. In this work, we proposed a
novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM), which fully exploits heterogeneous
information of historical data (e.g., incomplete OD matrices, unfinished order vectors, and DO matrices) to jointly learn the evolutionary
patterns of OD and DO ridership. Specifically, an OD modeling branch estimates the potential destinations of unfinished orders
explicitly to complement the information of incomplete OD matrices, while a DO modeling branch takes DO matrices as input to capture
the spatial-temporal distribution of DO ridership. Moreover, a Dual Information Transformer is introduced to propagate the mutual
information among OD features and DO features for modeling the OD-DO causality and correlation. Based on the proposed HIAM, we
develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously. Extensive experiments conducted on
two large-scale benchmarks demonstrate the effectiveness of our method for online metro origin-destination prediction.

Index Terms—Online Metro System, Time Series Prediction, Origin-Destination Ridership, Heterogeneous Information
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1 INTRODUCTION

T IME series prediction [1], [2] is one of the most active
research topics in artificial intelligence. In this work, we

pay attention to its practical application in transportation
management, e.g., improving the operation efficiency of
urban metro systems, since metro has become a popular
travel mode for residents. It was reported that over 10
million metro travel transactions are made per day in some
metropolises (e.g., Beijing and Shanghai) [3], [4]. Such a
huge ridership poses great challenges for metro operation.
In this case, accurately forecasting the future ridership is
crucial for metro scheduling and route planning.

Due to its significant applications, metro ridership pre-
diction has recently attracted extensive attention in both
academic and industrial communities [5], [6], [7], [8], [9].
However, most conventional works were merely proposed
for station-level prediction, i.e., forecasting the inflow and
outflow of each metro station, as shown in Fig. 1-(b,c). Such
information about inflow/outflow ridership is too coarse to
reflect the mobility of passengers. To explore more valuable
information for metro optimization, we focus on a more
challenging task, i.e., metro origin-destination prediction,
whose goal is to forecast the ridership between any two
stations over the next several time intervals. Specifically,
two special types of cross-station ridership are taken into
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consideration in our work:

• Origin-Destination (OD) Ridership: For each station,
we aim to forecast the number of passengers entering
at time interval t and the stations they will go to. For
example, the OD ridership at time interval t can be
represented as a matrix1 ODt ∈ RN×N , where N is
the total number of stations. More specifically, ODt(i, j)
denotes the number of passengers that entered station
i at time interval t and would head for station j, as
shown in Fig. 1-(d).

• Destination-Origin (DO) Ridership: We also aim to
predict the future outgoing ridership of each station
and where these passengers come from. Similarly, the
DO ridership at time interval t can be represented as a
matrix1 DOt ∈ RN×N , as shown in Fig. 1-(e). Specifi-
cally, DOt(i, j) is the number of passengers that entered
station j at earlier moments and exit from station i at
time interval t.

Intuitively, we should utilize the historical OD/DO rid-
ership to forecast the future OD/DO ridership. Unfortu-
nately, in online metro systems, the complete historical OD
matrices can not be constructed in real time. One example is
illustrated in Fig. 2. Suppose 228 passengers entered station
i in the past 15 minutes and 136 people have arrived at their
destinations up to now. However, the destinations of the
remaining ongoing passengers are unknowable, until they
arrive at their exited stations. Under this circumstance, we
can only construct an incomplete OD matrix based on the
finished trip transactions. When most passengers are still

1. OD matrix and DO matrix may be sparse since the ridership
between some stations is usually small or even zero. In this work,
we would compress these matrices by merging the small cross-station
ridership. More details can be referred to Section 3.
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Fig. 1. Illustration of the difference between station-level ridership and
origin-destination ridership. (a) is a metro system with four stations. (b)
and (c) are the inflow/outflow of each station, respectively. (d) is an
Origin-Destination (OD) matrix that represents the destination distribu-
tion of incoming passengers. (e) is a Destination-Origin (DO) matrix that
represents the origin distribution of outgoing passengers.

on their way to destinations, such an incomplete matrix is
very sparse and uninformative, which greatly increases the
difficulties of metro origin-destination distribution model-
ing.

In literature, there are very few methods [10], [11],
[12], [13], [14] proposed for online metro origin-destination
ridership prediction. Conventional works either take the
incomplete historical OD matrices as input or directly utilize
DO matrices to forecast the future OD matrices. Despite
certain progress, these methods suffer from the following
limitations. First, these works don’t explore the information
about unfinished/ongoing trips. Intuitively, human mobil-
ities are usually periodic [15], [16] and we can estimate
the potential destinations of those ongoing trips to some
extent. Therefore, more information is available for metro
OD prediction. Second, it is sub-optimal to directly use
the historical DO information to toughly forecast the fu-
ture OD matrices [13], since the former isn’t the essential
factor affecting the evolution of the latter. Third, all above-
mentioned methods are unaware of the mutual information
between OD and DO ridership, i.e., forecasting the future
OD and DO matrices separately. In essence, the previous OD
ridership would greatly influence the future DO ridership,
which is called OD-to-DO causality in our work. Moreover,
there also exists a relationship between the previous DO
ridership and the future OD ridership. For example, the
DO and OD ridership of tide stations in residential and
office areas are usually negatively correlated [17]. Such a
relationship is called DO-to-OD correlation. In summary,
previous methods only exploit limited information and
cannot effectively model the metro ridership distribution.

To tackle the aforementioned problems, we propose a
unified neural network module termed Heterogeneous In-
formation Aggregation Machine (HIAM), which fully ag-
gregates heterogeneous information of historical ridership
to learn the evolutionary trend of future origin-destination
ridership. In particular, our HIAM consists of i) two par-
allel branches respectively for OD and DO modeling, and
ii) a Dual Information Transformer for OD-DO interaction
modeling. Unlike previous works [10], [12] that neglected
unfinished transactions, we exploit the information of these
transactions explicitly to complement the incomplete OD
matrices. Specifically, our OD branch explores the long
short-term historical destination distribution to estimate two
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Fig. 2. Illustration of the incomplete OD matrix in online metro systems.
Suppose there were 228 passengers that entered station s in the past
15 minutes and 136 people have arrived at their destinations up to now.
Unfortunately, the destinations of the remaining people are unknowable.
In this case, we can only construct an incomplete OD matrix from
finished trip transactions.

potential destination matrices of ongoing passengers, which
are incorporated with the incomplete OD matrix and fed
into graph convolutional gated recurrent units (GCGRU) to
generate a compact OD hidden state. Meanwhile, the DO
branch feeds the corresponding DO matrix into a GCGRU
for DO hidden state generation. To model the internal inter-
action among OD and DO ridership, our Dual Information
Transformer enhances the OD state and DO state mutually
by propagating their complementary information in a dual
manner. These refined hidden states are respectively fed into
the following GCGRU for high-order spatial-temporal rep-
resentation learning. Based on the tailor-designed HIAM,
we develop a unified online metro origin-destination pre-
diction framework with a Seq2Seq architecture [18], which
jointly forecasts the OD ridership and DO ridership of the
next several time intervals. Finally, we conduct extensive
experiments on two large-scale benchmarks (i.e., Shang-
hai Metro and Hangzhou Metro), and evaluation results
show that our approach outperforms existing state-of-the-
art methods for both OD prediction and DO prediction.

In summary, the contributions of this work are four-fold:

• We propose a novel Heterogeneous Information Aggre-
gation Machine to facilitate the online metro origin-
destination prediction. To the best of our knowledge,
our HIAM is the first deep learning approach that
fully aggregates heterogeneous information of incom-
plete OD matrices, unfinished order vectors, and DO
matrices to forecast the future cross-station ridership.

• To fully exploit the information of unfinished transac-
tions, our HIAM explores the long short-term historical
distribution to estimate the potential destinations of
ongoing passengers, which are further utilized to com-
plement the information of incomplete OD matrices.

• A Dual Information Transformer is introduced to prop-
agate the mutual information among OD features and
DO features, thus better modeling the internal interac-
tion between OD and DO ridership. To the best of our
best knowledge, our work is the first attempt to employ
the heterogeneous transformer to address time series
forecasting.

• Extensive experiments conducted on two large-scale
datasets show the effectiveness of the proposed method
for both OD ridership prediction and DO ridership
prediction of online metro systems.

The rest of this paper is organized as follows. First,
we review some related works of traffic state prediction
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and origin-destination prediction in Section 2. We then
provide some preliminaries in Section 3 and introduce the
proposed approach for online metro prediction in Section 4.
Extensive comparison and ablation analysis are conducted
in Section 5. Finally, we conclude this paper in Section 6.

2 RELATED WORKS

2.1 Traffic Time Series Prediction
Accurate prediction of future traffic states is a crucial task
of time series analysis and it has widespread applications in
intelligent transportation systems. In literature, a large num-
ber of methods [19], [20], [21], [22], [23], [24], [25] have been
proposed to address this task. Early works usually applied
time series models for prediction, but could not well model
the traffic patterns of complex and unconstrained scenarios
[26], [27], [28]. Recently, deep neural networks have become
the mainstream approach in this field. For instance, Wang
et al. [29] developed an end-to-end convolutional neural
network to automatically discover the supply-demand pat-
terns from car-hailing service data. Zhang et al. [15] utilized
three residual networks [30] to learn the closeness, period
and trend properties for citywide traffic flow prediction.
Yao et al. [31] proposed a Deep Multi-View Spatial-Temporal
Network for taxi demand prediction, which learned spatial
relations with a deep CNN and modeled temporal corre-
lations with a Long Short-Term Memory (LSTM) cell [32].
Liu et al. [33], [34] incorporated a hierarchical convolutional
LSTM network with an attention mechanism to learn the
spatial-temporal representations dynamically.

Subsequently, graph convolutional networks (GCN [35],
[36], [37], [38]) were widely adopted to model various com-
plex systems with non-Euclidean structures. For instance,
Li et al. [39] modeled the traffic flow as a diffusion process
on a directed graph and captured the spatial dependency
with bidirectional random walks. Guo et al. [40] introduced
attention mechanisms into spatial-temporal graph networks
for dynamical traffic prediction. Bai et al. [41] utilized a
hierarchical graph convolutional structure to capture both
the spatial and temporal correlations for multi-step passen-
ger demand prediction. Sun et al. [42] developed a multi-
view graph convolutional network for crowd flow predic-
tion, where different views captured various interactions
and spatial correlations between different irregular regions.
Cao et al. [43] proposed a Spectral Temporal Graph Neural
Network, which incorporated a Graph Fourier Transform
and a Discrete Fourier Transform to jointly capture inter-
series correlations and temporal dependencies in the spec-
tral domain. Recently, GCN has also been employed for
metro ridership prediction. Han et al. [44] transformed the
city metro network into a graph and made predictions using
graph convolutional neural networks. Liu et al. [8] modeled
a metro system as graphs with physical/virtual topolo-
gies and proposed a unified Physical-Virtual Collaboration
Graph Network, which fully learned the complex ridership
patterns from those tailor-designed graphs. Nevertheless,
most previous methods merely forecast the traffic states
of every region or station, which can only provide limited
information for urban traffic management. Thus we focus
on the more meaningful origin-destination prediction in this
work.

2.2 Traffic Origin-Destination Prediction

Traffic origin-destination prediction is a challenging task
that aims to forecast the traffic flow or demand between any
two positions. Recently, this task has attracted increasing
attention in both academic and industrial communities. For
instance, Liu et al. [45] incorporated local spatial context,
temporal evolution context, and global correlation context to
forecast the future taxi OD demand. Shi et al. [46] extracted
temporal features for each OD pair with LSTM units and
learned the spatial dependency of origins and destinations
respectively. Wang et al. [47] applied graph convolutions
among geographical and semantic neighbors to model the
taxi OD transferring patterns. Ke et al. [48] characterized
the OD pair-wise relationships with multiple OD graphs
and developed a spatial-temporal encoder-decoder residual
framework to model both the spatial dependencies across
different OD pairs and the temporal dependencies of the
OD pairs themselves.

All methods mentioned above were proposed for ride-
hailing applications, where both the origin and destination
of a passenger are known once a taxi request is generated.
However, in online metro systems, the destination of a
passenger is unknowable until he/she reaches the desti-
nation station, thus the complete OD matrices cannot be
obtained immediately. Thus online metro origin-destination
prediction essentially belongs to the category of incomplete
time series analysis [49], [50]. To address this problem,
Gong et al. [12] used some indication matrices to mask and
neglect those unfinished metro orders and applied a non-
negative matrix factorization strategy to learn the latent
properties of entered and exited stations from incomplete
OD matrices. Both Zhang et al. [11] and Cheng et al. [14] used
the boarding (entering) demand to replace the unavailable
OD matrices. Specifically, Zhang et al. [11] developed a
channel-wise attentive split–convolutional neural network
to assign different values for OD features, while Cheng et
al. [14] developed a high-order weighted dynamic mode
decomposition to learn time-evolving features of a metro
system. Recently, Noursalehi et al. [13] toughly used the his-
torical DO matrices to forecast the future OD matrices with
a multi-resolution spatial-temporal neural network model.
However, all previous works have never explicitly exploited
the information of unfinished transactions. Moreover, they
either only predicted OD matrices or forecasted OD/DO
matrices separately, completely neglecting their intrinsic
correlation. In contrast, our method fully aggregates various
information to jointly forecast the future OD ridership and
DO ridership.

2.3 Transformer Architecture

Transformer [51] is an advanced neural network block that
aggregates information from the entire input sequence with
an attention mechanism [52]. Specifically, it consists of a
multi-head self-attention layer, a point-wise feed-forward
layer, and a normalization layer. The global computation
and perfect memory mechanism make it suitable for long
sequence modeling. Recently, transformer has been widely
applied to various tasks of artificial intelligence, inducing
natural language processing [53], [54], computer vision [55],
[56], [57], and time series analysis [58], [59]. For instance,
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Zhou et al. [60] proposed an efficient transformer-based
model, which incorporated a ProbSparse Self-attention
mechanism and distilling operation to capture time-series
long-range dependencies between outputs and inputs effi-
ciently. Inspired by the success of these works, we apply
a transformer to learn the global information interaction
between all metro stations. However, unlike most previous
works that only transferred homogeneous information, our
method develops a Dual Information Transformer, which
propagates OD information and DO information mutually
by generating heterogeneous queries, keys, and values. To
the best of our knowledge, our work is the first attempt
to employ the heterogeneous transformer to address time
series prediction.

3 PRELIMINARIES

In this section, we briefly introduce some notations and
the definition for online metro origin-destination prediction.
For brevity, the frequently used notations in this paper are
summarized in Table 1.

1) Transaction Data: In an online metro system, a large
number of trip transactions are made over time. For each
finished transaction, we can know both its entry station
and exit station, as well as their corresponding time-stamps.
However, for each ongoing transaction, only the entry sta-
tion and entry time-stamp are knowable.

2) Matrix Compression Preprocessing: It’s worth noting
that the ridership between some stations is usually small
or even zero. Inspired by the previous work [8], we would
take into consideration the origin-destination pairs that
have high ridership. Specifically, for each origin station,
we measure the destination distribution of all its entered
passengers and then select the top K − 1 stations with the
highest destination probability. Thus, we can generate an
OD mapping matrix Mod ∈ RN×K , where N is the number
of metro stations. More specifically, for the origin station i,
Mod(i, j) (j = 1, ...,K−1) is the index of its j-th destination
station with high ridership. Moreover, Mod(i,K) is set to -1,
which is utilized to indicate the indexes of the remaining
destination stations. In the same way, we can also generate
a DO mapping matrix Mdo ∈ RN×K , where Mdo(i, j) is
the index of the j-th most related origin station for the
destination station i. With a value of -1, Mdo(i,K) denotes
the indexes of remaining origin stations. In this work, these
mapping matrices are utilized to guide the compression of
metro OD and DO matrices.

3) Compact OD/DO Matrix Generation: At each time
interval t, we measure the numbers of various types of
transactions to generate the following vector and matrices.

i) Incomplete OD Matrix IODt ∈ RN×K : Specifically,
IODt(i, j) is the number of passengers that entered station
i at time interval t and have exited from station Mod(i, j),
where j = 1, ...,K − 1. Moreover, IODt(i,K) is the total
number of passengers which entered station i and have
exited from the remaining stations.

ii) Unfinished Order Vector Ut ∈ RN : This vector is
utilized to record the information of ongoing transactions.
Specifically, Ut(i, j) denotes the number of passengers that
entered at station i at time interval t but have not reached

TABLE 1
Some notations for online metro origin-destination ridership prediction.

Notations Description
t the current time interval
n the length of input historical sequence
m the length of output future sequence
N the number of metro stations

K
the number of considered OD/DO pairs
for each station

Mod ∈ RN×K the index of considered OD pairs
Mdo ∈ RN×K the index of considered DO pairs
Ut−n+i ∈ RN the unfinished order vector .(i = 1, ..., n)
IODt−n+i ∈ RN×K the incomplete OD matrix ...(i = 1, ..., n)
ODt+i ∈ RN×K the complete OD matrix .......(i = 1, ...,m)
DOt+i ∈ RN×K the complete DO matrix .......(i = −n+ 1, ...,m)

their destinations. Such information has never been ex-
plored in previous works [10], [12], [13].

iii) Complete OD Matrix ODt ∈ RN×K : Different to
IODt, this matrix records the complete OD ridership, and
it is usually served as the predicted target in our work.
Specifically, ODt(i, j) is the number of passengers that
entered station i at time interval t and would exit from
station Mod(i, j), where j = 1, ...,K − 1. The number of
passengers that would head for the remaining stations is
stored as ODt(i,K).

iv) DO Matrix DOt ∈ RN×K : This matrix denotes the
complete DO ridership at time interval t. More specifically,
DOt(i, j) is the number of passengers that entered station
Mdo(i, j) at earlier moments and exit from station i at time
interval t. Similarly, DOt(i,K) is the total number of exited
passengers at the remaining stations.

Definition 1. Online Metro Origin-Destination Prediction
Assuming that the current time interval is t and we aim to
utilize the historical ridership of previous n time intervals
to forecast the complete OD and DO ridership of future m
time intervals:

{IOD,U,DO}t−n+i ⇒ {OD,DO}t+j (1)

where i = 1, 2, ..., n and j = 1, 2, ...,m.

4 METHODOLOGY

In this work, we propose a unified neural network module
termed Heterogeneous Information Aggregation Machine
(HIAM), which fully captures various information (i.e., in-
complete OD ridership, unfinished orders, DO ridership) to
effectively model the metro origin-destination distribution.
As shown in Fig. 3, our HIAM consists of an OD modeling
branch, a DO modeling branch, and a Dual Information
Transformer for OD-DO interaction modeling. Specifically,
at each iteration, the OD branch feeds an incomplete OD
matrix generated from finished orders and two estimated
destination matrices for those unfinished orders into graph
convolutional gated recurrent units to learn a compact OD
hidden state for memorizing the OD evolution patterns.
Meanwhile, the DO branch takes the corresponding DO
matrix as input to generate a DO hidden state that mem-
orizes the DO evolution patterns. The Dual Information
Transformer is then applied to enhance the OD state and
DO state by exploring their mutual information. Based on
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Fig. 3. The architecture of the proposed Heterogeneous Information Ag-
gregation Machine. This module is composed of two parallel branches
respectively for OD and DO modeling, and a Dual Information Trans-
former for OD-DO interaction modeling.

the proposed HIAM, we develop an online metro origin-
destination prediction framework to jointly forecast the
complete OD and DO ridership of the next m time intervals.

4.1 Metro Topology Modeling
Metro is essentially a complex traffic system with a non-
Euclidean topology. Recently, GCN has been proven to be
effective for non-Euclidean data embedding [37], [61], [62].
Inspired by these works, we also model a metro system as a
directed graph and incorporate it into graph convolution
gated recurrent units (GCGRU) to learn spatial-temporal
representation for metro ridership.

In this work, we directly utilize the physical topology
of the studied metro system to guide the construction of the
graph network. By definition, a graph is composed of nodes,
edges as well as the weights of edges, i.e., G = (V,E,W ).
Specifically, V is the set of N nodes and each node repre-
sents a metro station in the real world. E ∈ RN×N is an
edge connection matrix. E(i, j) is 1 if the stations i and j
are directly connected in the metro system, otherwise, it’s
set to 0. We then obtain the edge weight matrix W ∈ RN×N

by applying a linear normalization on each row of W :

W (i, j) =
E(i, j)∑N

k=1 E(i, k)
. (2)

One example of graph construction for a metro system with
five stations is illustrated in Fig. 4.

Graph convolution and gated recurrent units are then
integrated for representation learning. Let us assume that
the input data of nodes is It = {I1t , I2t , ..., INt }, where Iit can
be the ridership data IODt(i), Ut(i), DOt(i) or their fea-
tures. Instead of using spectral convolution [35], [63], here
we utilize spatial convolution [64] to aggregate information
from neighbor nodes. Specifically, the convolutional feature
f(Iit) ∈ Rd of the node i is computed by:

f(Iit) = ΘlI
i
t +

∑
j∈N (i)

W (i, j)�ΘnI
j
t , (3)

where� is the Hadamard product andNp(i) is the neighbor
set of node i in the constructed graph. Θl denotes the self-
loop parameters and Θn represents the neighbor parame-
ters. d is the dimension of features.
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Fig. 4. Illustration of the graph construction for non-Euclidean metro
systems. (a) is the physical topology of a metro system with five stations.
Matrix (b) recodes the connectivity of edges in the constructed graph,
while matrix (c) is the normalized weights of edges.

We then embed graph convolutions into gated recur-
rent units for temporal modeling. Notice that all original
regular convolutions in GRU are replaced with our graph
convolutions, and we apply the modified formulation to
compute the reset gate, update gate, and new information.
For convenience, the computation of the output hidden state
Ht = {H1

t , H
2
t , ...,H

N
t } is denoted as:

Ht = GCGRU(It, Ht−1), (4)

where Hi
t is the hidden state of the i-th node and its

feature dimension is also set to d. Thanks to this graph
convolutional gated recurrent unit, we can learn spatial-
temporal features effectively from the ridership data of non-
Euclidean metro systems.

4.2 OD Modeling Branch
In HIAM, an OD modeling branch is specially developed to
learn the OD distribution of ridership by jointly exploiting
the information of incomplete OD matrices and unfinished
order vectors with multiple series-parallel GCGRU. The
overall architecture of our OD branch is shown in the left
sub-graph of Fig. 3.

In this work, we fully explore the potential information
of unfinished order vectors rather than directly feed them
into GCGRU. In particular, considering the periodicity of
resident mobilities, we estimate two potential destination
matrices for unfinished orders based on their long short-
term historical distribution. Let’s assume that the current
time interval is t and we take the destination estimation for
Ut−n+i as an example to explain our working mechanism.
As shown in Fig. 5, two destination distributions of histori-
cal unfinished orders are measured:
• Short-term Destination Distribution DDs

t−n+i ∈
RN×K : The unfinished order distribution at the same
time interval of yesterday is utilized to estimate the
destinations of ongoing passengers at the recent time
interval t − n + i. Specifically, DDs

t−n+i(j, k) is the
percentage of ongoing passengers that entered station
j at time interval t − n + i of yesterday but have not
reached their destination station Mod(j, k) until the
time interval t of yesterday.

• Long-term Destination Distribution DDl
t−n+i ∈

RN×K : The unfinished order distribution at the same
time interval of the same weekday/weekend is utilized
to estimate the destinations of ongoing passengers.
Let’s assume that today is Monday. DDs

t−n+i(j, k) is
the overall percentage of passengers that entered sta-
tion j at time interval t − n + i of all Monday in
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Fig. 5. Illustration of the potential destination matrices estimated for
unfinished orders. Specifically, we first measure two long short-term
destination distributions of historical unfinished orders and then estimate
the potential destinations of ongoing passengers.

the training set but have not reached their destination
station Mod(j, k) after n− i time intervals.

Notice that DDs
t−n+i may be unstable on Monday and

Saturday, since the ridership distribution is different be-
tween weekdays and weekends. Besides, DDl

t−n+i may
be smooth and cannot well reflect the recent ridership
distribution. Therefore, both the long short-term distribu-
tions are used for destination estimation. Specifically, we
generate two potential destination matrices UODl

t−n+i and
UODs

t−n+i ∈ RN×K with following formulations:

UODl
t−n+i(j, k) = Ut−n+i(j) ∗DDl

t−n+i(j, k),

UODs
t−n+i(j, k) = Ut−n+i(j) ∗DDs

t−n+i(j, k).
(5)

These estimated matrices and the corresponding incomplete
OD matrix IODt−n+i are fed into three individual GCGRU
for hidden state generation:

H l
i = GCGRU(UODl

t−n+i, H
l
i−1),

Hs
i = GCGRU(UODs

t−n+i, H
s
i−1),

Hiod
i = GCGRU( IODt−n+i, H

iod
i−1).

(6)

The hidden states H l
i and Hs

i are then fused on each node
with a 1*1 convolutional layer, whose output is further
utilized to complement the hidden state Hiod

i of IODt−n+i

and generate a compact OD hidden state Hod1
i ∈ RN×d.

This process can be formulated as:

Hod1
i = Hiod

i + Conv(H l
i ]Hs

i ,W1∗1), (7)

where ] denotes an operator of feature concatenation and
W1∗1 is the parameters of the convolutional layer.

As shown in Fig. 3, we then enhance the compact OD
state Hod1

i with a Dual Information Transformer (DIT) de-
scribed in Section 4.4. The enhanced state Ĥod1

i is further
fed into the following GCGRU and DIT to learn high-order
spatial-temporal features. This process can be formulated as:

Ĥod1
i , Ĥdo1

i = DIT (Hod1
i , Hdo1

i ), (8)

Hod2
i = GCGRU(Ĥod1

i , Ĥod2
i−1), (9)

Ĥod2
i , Ĥdo2

i = DIT (Hod2
i , Hdo2

i ), (10)

where Hdo1
i and Hdo2

i are the hidden states of DOt−n+i,
and their generation is descried in Section 4.3.

𝐻𝑖
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Fig. 6. The architecture of the proposed Dual Information Transformer. In
this module, we perform information prorogation among OD branch and
DO branch to jointly model the OD and DO distribution. The enhanced
OD and DO features are more informative for ridership prediction.

4.3 DO Modeling Branch

In HIAM, a DO modeling branch is also developed to learn
the DO distribution of metro ridership. As shown in the
right sub-graph of Fig. 3, our DO branch is composed of
two stacked GCGRU, each of which is followed by a Dual
Information Transformer. Specifically, at iteration i, the first
GCGRU takes the DO matrix DOt−n+i as input to generate
an initial DO hidden state Hdo1

i ∈ RN×d:

Hdo1
i = GCGRU(DOt−n+i, H

do1
i−1). (11)

We then employ Eq. (8) to enhance this DO state by absorb-
ing the OD information of Hod1

i . The enhance state Ĥdo1
i is

fed into the second GCGRU and the output hidden state is
computed by:

Hdo2
i = GCGRU(Ĥdo1

i , Ĥdo2
i−1). (12)

Similar to the OD branch, Hdo2
i ∈ RN×d is further refined by

another Dual Information Transformer, which is formulated
as Eq. (10). Thanks to the tailor-designed OD-DO interactive
mechanism, our method can effectively learn the DO evolu-
tionary trend with the aid of previous OD information.

4.4 Dual Information Transformer

In previous works [10], [12], OD and DO ridership are mod-
eled separately. However, we notice that they usually have
strong causality and correlation. For OD-to-DO causality,
the historical OD ridership essentially affects the future DO
ridership since the latter is the spatial-temporal evolution re-
sult of the former. Moreover, we can also infer the future OD
ridership based on the DO-to-OD correlation. For example,
the DO and OD ridership of some tide stations are usually
negatively correlated [17], e.g., their future OD ridership
would increase/decrease when the recent DO ridership
decreases/increases. Taking the causality and correlation
into consideration, we propose a novel Dual Information
Transformer (DIT) to model the OD and DO distribution
jointly by propagating their mutual information in a dual
manner. After the interaction, our OD and DO features
become more informative for ridership prediction.

As shown in Fig. 6, our DIT is implemented with two
cross-branch transformers [51], where the right one prop-
agates information from OD branch to DO branch, and the
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Fig. 7. The architecture of our online metro origin-destination prediction
framework. The framework is developed with a Seq2Seq architecture,
whose encoder and decoder are based on the proposed module, i.e.,
Heterogeneous Information Aggregation Machine (HIAM).

left one transfers information in the opposite direction. Here
we take as an example the interaction between the OD
feature Hod

i and DO feature Hdo
i to illustrate the working

mechanism of our DIT. Specifically, Hod
i and Hdo

i are first
respectively fed into three linear layers for query, key, and
value embedding:

Qod
i = Conv(Hod

i ,W qod
1∗1 ), Qdo

i = Conv(Hdo
i ,W qdo

1∗1 ),

Kod
i = Conv(Hod

i ,W kod
1∗1 ), Kdo

i = Conv(Hdo
i ,W kdo

1∗1 ),

V od
i = Conv(Hod

i ,W vod
1∗1 ), V do

i = Conv(Hdo
i ,W vdo

1∗1 ),
(13)

where all linear layers are implemented by 1*1 convolu-
tional layers with individual parameters. Same as Hod

i and
Hdo

i , these query/key/value features also have a dimension
of N×d. Based on an attention mechanism, we compute two
propagation coefficients Co2d

i ∈ RN×N and Cd2o
i ∈ RN×N ,

which dynamically determines the amount of information
propagated among OD feature and DO feature:

Co2d
i = softmax(Qdo

i (Kod
i )T ),

Cd2o
i = softmax(Qod

i (Kdo
i )T ),

(14)

where T denotes a operator of matrix transposition and the
softmax function is applied on each column. More specif-
ically, Co2d

i (j, k) is the weight of information transferred
from Hod

i (j) to Hdo
i (k), while Cd2o

i (j, k) denotes the weight
of information transferred from Hdo

i (j) to Hod
i (k). Finally,

the cross-branch information prorogation is performed with
the following formulations:

Ĥod
i = Hod

i + Cd2o
i V do

i ,

Ĥdo
i = Hdo

i + Co2d
i V od

i .
(15)

After the information interaction, the OD state and DO state
not only are enhanced mutually, but also better capture the
inherent causality/correlation among OD and DO ridership.
For convenience, Eq. 13-15 are simplified as:

Ĥod
i , Ĥdo

i = DIT (Hod
i , Hdo

i ). (16)

As stated in Eq. (8) and (10), the proposed DIT is applied
after each level of GCGRU in HIAM for transferring cross-
branch information hierarchically.

4.5 Online Origin-Destination Prediction Framework
Finally, we apply the proposed HIAM to develop a uni-
fied online metro origin-destination prediction framework,

TABLE 2
Details of SHMOD and HZMOD datasets. “# Stations” denotes the
number of metro stations. “# OD/DO Pairs” refers to the number of

considered OD/DO pairs for matrix compression.

Dataset SHMOD HZMOD
City Shanghai, China Hangzhou, China

# Stations 288 80
# OD/DO Pairs 76 26
Daily Ridership 8.82 M 2.35 M

Time Interval 15 minutes 15 minutes
Training Set 7/01/2016 - 8/31/2016 1/01/2019 - 1/18/2019

Validation Set 9/01/2016 - 9/09/2016 1/19/2019 - 1/20/2019
Testing Set 9/10/2016 - 9/30/2016 1/21/2019 - 1/25/2019

which forecasts the OD and DO ridership simultaneously
for the next several time intervals. Following previous
works [65], [66], [67], our framework is implemented with a
Seq2Seq architecture [18], as shown in Fig. 7.

Specifically, our framework is composed of an encoder
and a decoder, both of which are based on a multi-
step HIAM. It is worth noting that the HIAM in the de-
coder is simplified by removing two GCGRU whose in-
puts are the estimated destination matrices, because there
don’t exist unfinished orders at the forecasting stage. Here
we introduce the details of our framework. In the en-
coder, at iteration i (i = 1, ..., n), the heterogeneous data
{IODt−n+i, Ut−n+i, DOt−n+i} are fed into our HIAM for
learning origin-destination evolution information. Notice
that the initial hidden states of all GCGRU are set to zero
and the final hidden states are used to initialize the hidden
states of the decoder. In the decoder, the input data of
the first iteration is set to zero and the output hidden
state of HIAM is respectively fed into a fully connected
layers to forecast the OD matrix ÕDt+1 ∈ RN×K and
DO matrix D̃Ot+1 ∈ RN×K . At iteration j (j ≥ 2), our
HIAM takes as input the predicted ridership matrices of
the previous iteration to forecast ÕDt+j and D̃Oj . After m
iterations, we can obtain a sequence of future OD ridership
{ÕDt+1, ..., ÕDt+m} and a sequence of future OD ridership
{D̃Ot+1, ..., D̃Ot+m}.

5 EXPERIMENTS

In this section, we perform extensive experiments to verify
the effectiveness of our model. First, we would introduce the
experimental settings (e.g., dataset construction, implemen-
tation details, and evaluation strategy). We then compare the
proposed method with ten basic and advanced approaches.
Finally, we conduct ablation studies to explore the influence
of each component in our method.

5.1 Experiments Settings

5.1.1 Dataset Construction
In this section, we introduce two large-scale benchmarks for
online metro origin-destination prediction, which are con-
structed with billions of transactional records collected from
the metro systems of Shanghai and Hangzhou, China. For
brevity, these datasets are termed as SHMOD and HZMOD
respectively, and their details are summarized in Table 2.

Specifically, SHMOD contains the transactional data of
288 stations, whose period ranges from Jul. 1st, 2016 to
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Sept. 30th, 2016. HZMOD is built based on the transactional
data of 80 stations collected in January 2019. On these
datasets, the time interval is set to 15 minutes uniformly.
As mentioned above, OD/DO matrices are usually sparse,
thus for each station, we mainly consider 1) the number
of passengers heading for/coming from its most relevant
K − 1 stations, and 2) the number of passengers heading
for/coming from the remaining stations. In this work, K
is set to 76 on SHMOD and 26 on HZMOD, because we
observe that the ridership of such a small number of OD
pairs accounts for a major proportion (i.e., 70%) of the
total ridership. We then employ the data processing method
described in Section 3 to generate incomplete OD matrices,
unfinished order vectors, and OD matrices for each inferring
time interval t. Finally, these datasets are officially divided
into a training set, a validation set, and a testing set.

5.1.2 Implementation Details

In this work, the proposed method is implemented with the
PyTorch framework [68]. The length n of input sequences
is 4, and so is the length m of output sequences. The batch
size is set to 8 for SHMOD and 32 for HZMOD, while the
feature dimension d is set to 96 uniformly. Xavier uniform
[69] is utilized to initialize the weights of filters and PReLU
[70] is used as the activation function. In our transformer,
multi-head attention is adopted and the head number is 4.
During the training phase, the input data and their ground-
truths are normalized with Z-score Normalization2. The
learning rate is initialized to 0.001 for 60 epochs and decays
by 0.2/0.5 for SHMOD/HZMOD every 20 epochs. Adam
optimizer [71] is applied to minimize the mean absolute
error between the predicted results and the correspond-
ing ground-truths for 300 epochs. All interim models are
evaluated on the validation set and the one with the best
performance is chosen as our final model, which would be
formally evaluated on the testing set for fair comparisons.

5.1.3 Evaluation Strategy

As mentioned above, those normalized ground-truths are
used as supervision during training. Therefore, when eval-
uating, we first convert the output OD/DO matrices to
the original scale with an inverted Z-score Normalization.
Network-wide Mean Absolute Percentage Error (MAPE) is
then adopted to evaluate the performance of different meth-
ods. In particular, we take into consideration the percentage
error of the whole metro network, rather than compute the
error of each OD/DO pair separately which is sensitive
to a small denominator. Specifically, the MAPE for OD
prediction is computed as:

MAPE =

∑N
i=1

∑K
j=1 |ÕD(i, j)−OD(i, j)|∑N
i=1

∑K
j=1 |OD(i, j)|

. (17)

The MAPE for DO prediction is computed with the same
formulation. Notice that our method forecasts the ridership
of the next m time intervals, and we would measure the
MAPE for each time interval in the following sections.

2. https://en.wikipedia.org/wiki/Standard score

5.2 Comparison with State-of-the-Art Methods

In this work, we compare the proposed method with the
following ten basic and advanced approaches. Notice that
there are not any public source codes of existing methods for
metro OD/DO prediction [11], [12], [13], thus these works
are not involved in our comparison. To facilitate future
research on this task, we would release our source codes
and benchmarks once accepted.
• Historical Average (HA): HA is a periodic baseline

that uses historical average ridership to forecast future
ridership. More specifically, the OD/DO ridership at
9:00-9:15 am on a specific Monday is predicted as the
average of historical observations from the correspond-
ing timestamp of all Mondays in the training set.

• Random Forest (RF): As a traditional machine learning
method, RF is reimplemented to forecast the future
metro ridership with some decision trees. Specifically,
the number of trees is set to 10 in our work. These trees
are expanded automatically until all leaves contain one
sample or are pure.

• Long Short-Term Memory (LSTM [72]): This model
employs two fully-connected LSTM layers to forecast
the future metro ridership in a Seq2Seq manner [18].
The dimension of hidden states is set to 256.

• Gated Recurrent Unit (GRU [73]): The architecture of
this model is similar to that of the previous model.
The main difference lies in that this model adopts
GRU layers rather than LSTM layers. The dimension
of hidden states is also set to 256.

• GraphWaveNet [74]: In this network, an adaptive de-
pendency matrix is learned to discover graph structure
automatically, while a stacked dilated 1D convolution
component is developed to model long-range temporal
sequences. The official code3 is used to reimplement
this method on our SHMOD and HZMOD benchmarks.

• Diffusion Convolutional Recurrent Neural Network
(DCRNN [39]): DCRNN is a representative model
for traffic forecasting, in which spatial dependencies
are captured through bidirectional random walks on
graphs and temporal dependencies are modeled with
an encoder-decoder architecture. This model is easily
reimplemented to forecast the metro OD/DO ridership
with its official code4.

• Spatial-Temporal Graph to Sequence Network
(STG2Seq [41]): In this model, spatial and temporal
relationships of traffic flow are captured simultane-
ously with a hierarchical graph convolutional structure.
Based on the official code5, this model is reimplemented
for metro OD/DO ridership prediction.

• Physicla-Virtual Collaborative Graph Network
(PVCGN [8]): PVCGN is a recent method designed for
metro ridership prediction. In this model, a physical
graph, a similarity graph, and a correlation graph are
incorporated to learn the complex patterns of metro
ridership. The official code6 is adopted to reimplement
this model for metro OD/DO prediction.

3. https://github.com/nnzhan/Graph-WaveNet
4. https://github.com/liyaguang/DCRNN
5. https://github.com/LeiBAI/STG2Seq
6. https://github.com/HCPLab-SYSU/PVCGN
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TABLE 3
Performance of OD prediction and DO prediction on the SHMOD Dataset.

Ridership Time Interval HA RF LSTM GRU GraphWaveNet DCRNN STG2Seq PVCGN DGSL Informer Ours

OD

15 min 46.28% 75.05% 43.80% 44.96% 40.49% 41.14% 42.56% 38.69% 40.05% 40.06% 37.81%
30 min 46.21% 72.19% 43.08% 42.22% 40.20% 41.13% 41.58% 38.69% 40.00% 40.28% 37.79%
45 min 46.12% 71.96% 44.55% 42.85% 40.46% 41.55% 41.47% 38.92% 40.32% 40.20% 37.99%
60 min 46.05% 78.69% 46.95% 43.99% 41.54% 42.23% 41.77% 39.34% 40.76% 40.48% 38.36%

DO

15 min 47.18% 65.47% 43.99% 42.32% 42.29% 40.53% 40.77% 38.72% 40.27% 40.79% 38.65%
30 min 47.22% 65.72% 41.91% 41.32% 42.04% 40.59% 40.03% 39.01% 40.54% 41.33% 38.56%
45 min 47.23% 66.15% 42.75% 42.16% 42.04% 41.10% 40.22% 39.42% 41.09% 41.71% 38.80%
60 min 47.19% 66.75% 44.00% 43.06% 42.18% 41.89% 40.95% 39.96% 41.69% 42.10% 39.18%

TABLE 4
Performance of OD prediction and DO prediction on the HZMOD Dataset.

Ridership Time Interval HA RF LSTM GRU GraphWaveNet DCRNN STG2Seq PVCGN DGSL Informer Ours

OD

15 min 33.00% 57.33% 32.19% 32.85% 32.29% 31.42% 30.54% 29.83% 30.68% 29.66% 27.86%
30 min 32.98% 55.27% 32.46% 32.82% 32.84% 31.61% 30.97% 30.42% 30.87% 29.79% 27.90%
45 min 32.95% 55.88% 33.83% 34.13% 33.52% 32.12% 31.37% 30.84% 31.07% 30.06% 28.04%
60 min 32.91% 63.14% 35.46% 35.90% 34.79% 32.73% 31.46% 30.62% 31.30% 30.60% 28.22%

DO

15 min 34.19% 52.97% 31.23% 32.55% 33.64% 30.89% 30.12% 30.06% 30.58% 30.51% 28.57%
30 min 34.26% 53.11% 31.25% 31.92% 33.76% 31.07% 29.79% 30.49% 30.63% 30.49% 28.64%
45 min 34.31% 53.39% 32.32% 33.14% 34.63% 31.66% 30.40% 30.99% 31.02% 30.90% 28.83%
60 min 34.32% 53.76% 34.02% 34.75% 35.72% 32.46% 31.52% 31.68% 31.57% 31.56% 29.09%

• Discrete Graph Structure Learning (DGSL [75]: This
method proposes a probabilistic graph model to learn
the graph structure of time series data by optimizing
the mean performance over the graph distribution and
sampling the discrete graph differentiably. Based on
its official code7, this method is reimplemented on the
SHMOD and HZMOD datasets.

• Informer [60]: This is an efficient transformer-based
model for long sequence time-series forecasting. This
model incorporates three efficient and effective mod-
ules to capture long-range dependencies between input
and output. Based on its official code8, we reimplement
Informer to forecast metro OD/DO ridership. Notice
that the hyper-parameters input sequence length of the
encoder, start token length and prediction sequence
length of the decoder are set to 4, 2, and 4, respectively.

The performance of all compared methods are summa-
rized in Table 3 for SHMOD and Table 4 for HZMOD.
We can observe that the traditional method RF obtains
unacceptable MAPE at all time intervals and even per-
forms worse than the simple baseline HA, since RF has
a limited capacity to capture the complex spatial-temporal
distribution of OD/DO ridership. Compared with HA, these
RNN-based models LSTM and GRU have certain perfor-
mance improvements, especially for the first two-step pre-
dictions (i.e., 15 and 30 minutes), when explicitly learning
the temporal representations from input data. By modeling
the spatial/temporal distribution with graph convolutions,
those graph-based methods (e.g., GraphWaveNet, STG2Seq,
DCRNN, DGSL, and PVCGN) outperform those traditional
baselines and common recurrent neural networks. We find
that the multi-graph model PVCGN is better than single-
graph models in most cases. Moreover, we obverse that
the transformer-based model Informer obtains comparable
results on the HZMOD dataset, but its performance is not
satisfactory on the SHMOD dataset. The reason is that
Informer mainly captures temporal dependencies, without

7. https://github.com/chaoshangcs/GTS
8. https://github.com/zhouhaoyi/Informer2020

learning spatial dependencies explicitly. To our knowledge,
the spatial complexity of the Shanghai metro system is much
greater than that of the Hangzhou metro system.

Despite progress in model architecture and performance,
all the above methods only take finished orders as input
data for OD prediction, while ignoring the mutual infor-
mation between OD and DO distributions. By contrast, our
method introduces unfinished orders creatively to enhance
the incomplete OD matrices and fully explore the OD-
DO information interaction, thereby achieving state-of-the-
art performance for both the OD and DO prediction. For
instance, on the SHMOD dataset, our HIAM obtains the
lowest MAPE 38.36% and 39.18% respectively for OD rid-
ership and DO ridership in terms of 60-minute prediction.
On the HZMOD dataset, our method also outperforms all
previous approaches consistently with large margins during
each time interval. These comparisons greatly demonstrate
the effectiveness of the proposed HIAM for online metro
origin-destination prediction.

5.3 Ablation Studies
In this subsection, we perform extensive analyses to verify
the effectiveness of each component of the proposed HIAM.

5.3.1 Effectiveness of Unfinished Order Information
As mentioned above, to facilitate the OD prediction, our
method takes unfinished transactions into consideration and
estimates the potential destinations of ongoing passengers
based on long short-term historical distributions. To show
the effectiveness of our unfinished order usage strategy, we
implement five variants of our method for OD modeling.
Note that these variants don’t involve the DO prediction.
• IOD-Net: This variant directly utilizes these previous

incomplete OD matrices {IODt−n+i|i = 1, ..., n} to
forecast the future complete OD ridership.

• IOD+U-Net: This variant takes these incomplete OD
matrices and those corresponding unfinished order
vectors {Ut−n+i|i = 1, ..., n} for OD prediction. Note
that these unfinished order vectors are directly fed into
GCGRU without potential destination estimation.
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TABLE 5
Performance of different input information for OD prediction.

Dataset Time Interval IOD IOD+U IOD+U(short) IOD+U(long) IOD+U(short+long)

SHMOD

15 min 41.04% 39.58% 39.58% 39.38% 38.69%
30 min 41.01% 39.61% 39.56% 39.34% 38.43%
45 min 41.54% 40.17% 40.08% 39.75% 38.63%
60 min 42.43% 41.06% 40.94% 40.43% 39.18%

HZMOD

15 min 31.47% 29.89% 29.50% 29.48% 28.75%
30 min 32.25% 30.42% 29.88% 29.86% 28.87%
45 min 33.60% 31.37% 30.75% 30.55% 29.31%
60 min 35.11% 32.60% 31.91% 31.55% 30.05%

TABLE 6
The influence of OD-to-DO causality on DO prediction performance. Here we explore the OD-to-DO causality to facilitate the metro DO prediction.

‘Input → Output ’ denotes that the historical input data is used to forecast the future output data.

Input→ Output SHMOD HZMOD
15 min 30 min 45 min 60 min 15 min 30 min 45 min 60 min

IOD→ DO 41.33% 41.26% 41.66% 42.38% 31.81% 31.81% 32.75% 34.12%
IOD+U→ DO 40.99% 40.81% 41.18% 41.87% 31.57% 31.64% 32.11% 33.05%

IOD+U(short+long)→ DO 40.17% 39.89% 40.05% 40.54% 30.45% 30.31% 30.49% 31.12%
DO→ DO 40.41% 40.57% 41.20% 42.05% 30.61% 31.23% 32.44% 33.99%

IOD+U(short+long), DO→ DO 38.65% 38.56% 38.80% 39.18% 28.57% 28.64% 28.83% 29.09%

TABLE 7
The influence of DO-to-OD correlation on OD prediction performance. Here the DO-to-OD correlation is incorporated to promote the metro OD

prediction. ‘Input → Output ’ denotes that the historical input data is used to forecast the future output data.

Input→ Output SHMOD HZMOD
15 min 30 min 45 min 60 min 15 min 30 min 45 min 60 min

DO→ OD 42.31% 41.95% 42.17% 42.87% 33.36% 33.56% 34.28% 35.50%
IOD+U(short+long)→ OD 38.69% 38.43% 38.63% 39.18% 28.75% 28.87% 29.31% 30.05%

IOD+U(short+long), DO→ OD 37.81% 37.79% 37.99% 38.36% 27.86% 27.90% 28.04% 28.22%

• IOD+U(short)-Net: The architecture of this variant is
similar to that of IOD+U-Net. In this network, the
potential destinations of each Ut−n+i are first estimated
on the basis of the short-term destination distribution of
historical unfinished orders.

• IOD+U(long)-Net: Different from the previous variant,
this network employs the long-term destination distri-
bution of historical unfinished orders to estimate the
potential destinations of those ongoing passengers.

• IOD+U(short+long)-Net: This network incorporates
both long-term and short-term historical distributions
to estimate the passengers’ potential destinations for
enhancing the incomplete OD information.

The performance of all variants is summarized in Table
5. We can observe that IOD-Net obtains poor MAPE at
all time intervals on both datasets, since this model uses
very limited information for ridership prediction. By di-
rectly introducing unfinished data, IOD+U-Net can decrease
the MAPE from 42.43% to 41.06% on SHMOD and from
35.11% to 32.60% on HZMOD for the 60-minute prediction.
This phenomenon well demonstrates the significance of the
information aggregation from unfinished orders. Moreover,
the variants IOD+U(short)-Net and IOD+U(long)-Net per-
form better than IOD+U-Net, when estimating the potential
destinations of unfinished orders explicitly. For instance,
at the fourth time interval, IOD+U(short)-Net obtains a
MAPE 31.91% on HZMOD, while IOD+U(long)-Net obtains
a MAPE 40.43% on SHMOD. Finally, IOD+U(short+long)-
Net achieves obvious performance improvement by incor-
porating the long short-term estimated destination infor-
mation. Specifically, compared with IOD-Net, this model

reduces the MAPE, on average, by 2.77% on the SHMOD
dataset and by 3.86% on the HZMOD dataset. Therefore,
we conclude that the usage of unfinished orders with long
short-term destination estimation can greatly promote on-
line OD prediction.

5.3.2 Influence of OD-to-DO Causality

In this subsection, we explore the influence of OD-to-DO
causality on metro DO prediction, i.e., utilizing the historical
OD ridership information to forecast the future DO rider-
ship. Here we implement the following variants that do not
use historical DO information but purely exploit OD-to-DO
causality for DO prediction.

• IOD→DO: This variant only takes incomplete OD ma-
trices {IODt−n+i|i = 1, ..., n} to forecast the future DO
ridership {DOt+j |i = 1, ...,m}.

• IOD+U→DO: This variant forecasts the future DO rid-
ership from historical {IODt−n+i, Ut−n+i|i = 1, ..., n}.
Notice that the potential destinations of Ut−n+i are not
estimated in this variant.

• IOD+U(short+long)→DO: In this variant, historical
incomplete OD matrices and the long short-term esti-
mated destinations of unfinished orders are incorpo-
rated to predict the future DO ridership.

The performance of the above variants is summa-
rized in Table 6. Specifically, the IOD→DO model per-
forms poorly, since incomplete OD matrices only record
the number of passengers who have completed their trips.
We can observe that the performance of those OD-to-
DO models can be further improved when incorporating
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TABLE 8
Performance of different OD-DO interaction methods on the SHMOD

and HZMOD datasets.

Dataset Ridership Time Interval W/O SS DIT

SHMOD

OD

15 min 38.69% 38.66% 37.81%
30 min 38.43% 38.57% 37.79%
45 min 38.63% 38.84% 37.99%
60 min 39.18% 39.24% 38.36%

DO

15 min 40.41% 39.30% 38.65%
30 min 40.57% 39.22% 38.56%
45 min 41.20% 39.51% 38.80%
60 min 42.05% 39.94% 39.18%

HZMOD

OD

15 min 28.75% 28.49% 27.86%
30 min 28.87% 28.51% 27.90%
45 min 29.31% 28.74% 28.04%
60 min 30.05% 29.13% 28.22%

DO

15 min 30.61% 29.17% 28.57%
30 min 31.23% 29.14% 28.64%
45 min 32.44% 29.35% 28.83%
60 min 33.99% 29.77% 29.09%

the information about unfinished orders. In particular, the
IOD+U(short+long)→DO model achieves very competitive
performance, even better than the DO→DO model that
uses the historical DO ridership to forecast the future DO
ridership. Finally, as shown in the last row of Table 6,
the IOD+U(short+long),DO→DO model achieves the best
performance on both datasets, when learning the OD-to-DO
causality and DO-to-DO mapping simultaneously. These
experiments demonstrate that OD-to-DO causality can well
facilitate the metro DO ridership prediction.

5.3.3 Influence of DO-to-OD Correlation
In [13], only the historical DO ridership was used to forecast
the future OD ridership, due to the delayed availability of
complete OD matrices. In this subsection, we delve into the
impact of DO-to-OD correlation on OD prediction. Here we
implement a variant of our model termed DO→OD, which
utilizes {DOt−n+i|i = 1, ..., n} to forecast {ODt+j |j =
1, ...,m}. As shown in Table 7, the DO→OD variant obtains
unsatisfactory MAPE on both datasets, performing much
worse than the IOD+U(short+long)→OD variant that ex-
ploits incomplete OD matrices and unfinished orders for fu-
ture OD prediction. However, we find that the performance
of OD prediction can be further improved, when the DO-
to-OD correlation and IOD+U(short+long)-to-OD mapping
are learned simultaneously. Specifically, as shown in the last
row of Table 7, the IOD+U(short+long),DO→OD variant
reduces the MAPE, on average, by 0.75% on the SHMOD
dataset and by 1.24% on the HZMOD dataset, compared
with the IOD+U(short+long)→OD variant. Therefore, we
can draw the following conclusions. i) It is inappropriate
to perform OD prediction only using the historical DO
ridership. ii) The DO-to-OD correlation can facilitate the
metro OD ridership prediction to a certain extent.

5.3.4 Exploration of OD-DO Interaction Operation
In this work, we introduce a novel Dual Information Trans-
former (DIT) to capture the mutual information among
OD distribution and DO distribution. Here we explore the
influences of different OD-DO interaction operations:
• W/O Interaction: This method doesn’t perform OD-DO

interaction, which means that the future OD ridership
and DO ridership are forecasted separately.

TABLE 9
Performance of different lengths of the input sequence on the SHMOD

dataset.

Ridership Time Interval Input Sequence Length
1 2 3 4 5

OD

15 min 38.99% 38.20% 37.90% 37.81% 37.79%
30 min 39.00% 38.24% 37.88% 37.79% 37.72%
45 min 39.19% 38.53% 38.12% 37.99% 37.93%
60 min 39.46% 38.94% 38.48% 38.36% 38.39%

DO

15 min 39.24% 38.82% 38.71% 38.65% 38.55%
30 min 39.06% 38.80% 38.63% 38.56% 38.46%
45 min 39.35% 39.10% 38.91% 38.80% 38.68%
60 min 39.74% 39.54% 39.31% 39.18% 39.04%

TABLE 10
Performance of different lengths of the input sequence on the HZMOD

dataset.

Ridership Time Interval Input Sequence Length
1 2 3 4 5

OD

15 min 28.44% 28.02% 27.96% 27.86% 27.82%
30 min 28.45% 28.12% 28.00% 27.90% 27.84%
45 min 28.58% 28.29% 28.19% 28.04% 28.02%
60 min 28.72% 28.52% 28.41% 28.22% 28.26%

DO

15 min 29.15% 28.81% 28.58% 28.57% 28.46%
30 min 29.16% 28.99% 28.66% 28.64% 28.47%
45 min 29.33% 29.24% 28.88% 28.83% 28.64%
60 min 29.67% 29.55% 29.18% 29.09% 28.95%

• Single-Station (SS) Interaction: This method propa-
gates the OD and DO information on the same station.
That is to say, the OD information of station i is only
used to enhance the DO information of station i, and
vice versa. More specifically, the OD hidden state and
DO hidden state of station i are concatenated and fed
into a 1*1 convolutional layer to generate the enhanced
OD hidden state and DO hidden state.

• DIT Interaction: The method propagates information
between all stations with the proposed DIT, in which
the OD/DO information of station i can be transferred
to enhance the DO/OD information of station j.

The performance of all OD-DO interaction methods are
summarized in Table 8. We can observe that the model
with Single-Station Interaction surpasses the model without
interaction significantly for DO prediction, and can also
improve the performance of OD prediction to a certain
extent, since the causality of OD-to-DO is easily captured
but the correlation of DO-to-OD is challenging for Single-
Station Interaction. When adopting cross-station interaction,
our DIT can fully exploit the OD-DO mutual information,
thereby achieving the best performance for both OD and
DO prediction. For instance, compared with “W/O Interac-
tion”, our DIT reduces the MAPE, on average, by 0.75%
for OD prediction and 2.26% for DO prediction on the
SHMOD dataset. Similar performance improvement can be
obtained on the HZMOD dataset. These experiments verify
the superiority of the proposed DIT for OD-DO information
interaction.

5.3.5 Impact of Different Input Sequence Length
As described in Section 3, we utilize the data of previous
n time intervals to forecast the ridership of future m time
intervals. Following [8], we fix the output sequence length
m to 4 and explore the effect of input sequence length n
for online origin-destination prediction. As shown in Table
9 and Table 10, the MAPE gradually decreases as the variate
n increase from 1 to 4, and longer sequence no longer results
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TABLE 11
Performance of compressed OD/DO matrices and original OD/DO matrices on the SHMOD dataset.

Ridership Time Interval With Compression Without Compression
Top K − 1 Stations Remaining Stations (Merged) Top K − 1 Stations Remaining Stations (Non-merged)

OD

15 min 47.56% 14.14% 48.36% 84.40%
30 min 47.30% 14.54% 48.04% 84.15%
45 min 47.40% 14.96% 48.15% 84.10%
60 min 47.75% 15.36% 48.55% 84.15%

DO

15 min 49.09% 14.04% 50.05% 82.63%
30 min 48.91% 14.25% 49.82% 82.56%
45 min 49.11% 14.62% 50.00% 82.64%
60 min 49.52% 14.95% 50.41% 82.78%

TABLE 12
Performance of compressed OD/DO matrices and original OD/DO matrices on the HZMOD dataset.

Dataset Time Interval With Compression Without Compression
Top K − 1 Stations Remaining Stations (Merged) Top K − 1 Stations Remaining Stations (Non-merged)

OD

15 min 33.56% 13.31% 34.01% 62.42%
30 min 33.57% 13.44% 33.94% 61.89%
45 min 33.71% 13.60% 34.22% 61.89%
60 min 33.94% 13.65% 34.60% 62.21%

DO

15 min 34.88% 13.32% 35.40% 61.14%
30 min 34.86% 13.59% 35.28% 60.66%
45 min 35.02% 13.85% 35.48% 60.90%
60 min 35.29% 14.05% 35.92% 61.45%

in significant improvement. To explain this phenomenon,
we measure the commuting time of metro passengers. As
shown in Fig. 8, we can see that most passengers (i.e., 87.10%
for ShangHai and 96.54% for HangZhou) complete their
metro journey within one hour, i.e., four time intervals. It is
reasonable to use the OD/DO ridership of the previous hour
to predict the OD/DO ridership of the next hour. Therefore,
the length m of the input sequence is set to 4 consistently in
this work.

5.3.6 Are compressed OD/DO matrices useful?

As mentioned in Section 3, we compress those original
OD/DO matrices with a dimension N×N to form com-
pact matrices with a dimension N×K, i.e., forecasting the
OD/DO ridership of top K − 1 most relevant stations and
the total ridership of remaining stations. In this subsection,
we explore the influence of matrix compression for online
metro origin-destination prediction. To this end, we imple-
ment a variant of our model that utilizes the historical N×N
ridership matrices to forecast the future N×N ridership
matrices. Here we measure the prediction performance of
the top K−1 stations and the remaining stations separately.
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Fig. 8. The Cumulative Density Function of the commuting time of
metro passengers in Shanghai and Hangzhou. We can observe that the
commuting time of most passengers is within one hour.

As shown in Table 11, the MAPE of small cross-station
ridership is more than 80% on the SHMOD dataset when
we use original sparse matrices, since the ridership between
weakly-relevant stations usually lacks regularity. Such poor
performance is unacceptable and meaningless for practical
application. By contrast, when merging these weakly rele-
vant stations, our method obtains a small MAPE of about
14% for OD and DO prediction, since the evolution patterns
of the total ridership of these stations are easily captured.
Moreover, we find that introducing the non-merged rider-
ship between weakly relevant stations would degrade the
prediction performance between highly relevant stations.
Specifically, the MAPE of the top K − 1 stations of non-
compressed matrices is 49.17% on average, while that of
compressed matrices is 48.33% on average. This is because
the irregular ridership of weakly relevant stations confuses
the prediction model to a certain degree. As shown in Table
12, we can observe that the performance of compressed
OD/DO matrices is also better on the HZMOD dataset. In
summary, the OD/DO matrix compression is meaningful
for online origin-destination prediction.

6 CONCLUSION

In this work, we focus on a crucial yet challenging task,
online metro origin-destination prediction, i.e., forecasting
the OD ridership and DO ridership for multiple time inter-
vals in the future. However, conventional methods either
directly used the limited information of incomplete OD
matrix for inference, or completely neglected the causality
and correlation between these two types of cross-station
ridership. To facilitate this problem, we introduce a novel
Heterogeneous Information Aggregation Machine (HIAM),
which fully exploits heterogeneous information of historical
data (e.g., incomplete OD matrices, unfinished order vec-
tors, and DO matrices) to jointly learn the spatial-temporal
patterns of OD and DO ridership. Based on HIAM, we
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develop a Seq2Seq network to forecast the future OD and
DO ridership simultaneously. Finally, we conduct extensive
experiments on two large-scale benchmarks, and experi-
ment results show that our method achieves state-of-the-art
performance for online metro origin-destination prediction.
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